Modeling Peer Influence in Time-Varying Networks

Matthias Wölbitsch, Simon Walk, and Denis Helic

November 29, 2017

Institute for Interactive Systems and Data Science Graz University of Technology

Introduction

Motivation

Human behavior

- complex dynamics (e.g., bursty)
- influenced by peers

Applications

- detection of bots in online platforms
- sustainability of social and collaboration networks

Related Work

Activity-driven approach by Perra et al. [1]

- time-varying networks
- activity potential a_i

Community extension by Laurent et al. [2]

- · memory, closure processes
- · community structures, strong and weak ties

Limitations

- activity potential is fixed and intrinsic
- no dependencies or external influences

Related Work

Activity-driven approach by Perra et al. [1]

- time-varying networks
- activity potential a_i

Community extension by Laurent et al. [2]

- · memory, closure processes
- · community structures, strong and weak ties

Limitations

- activity potential is fixed and intrinsic
- no dependencies or external influences

Model

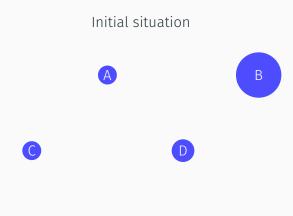
Peer Influence Model Definition

Peer influence p_i

- number of active neighbors
- strong ties are more influential
- upper bound q

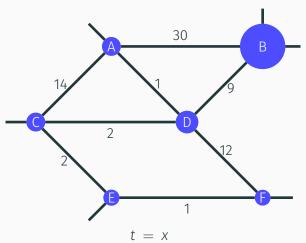
Activation probability

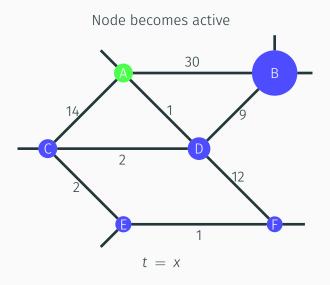
- mapping active neighbors onto probability
- requirements (critical threshold, saturation)



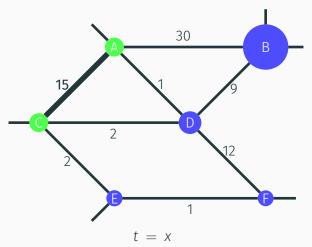
$$t = 0$$

Situation at the beginning of iteration x

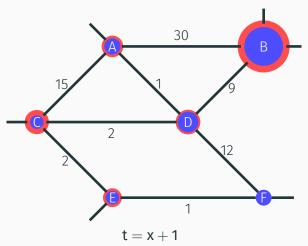




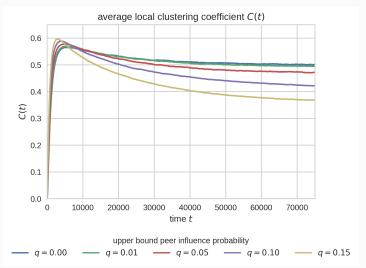
Node interacts with other node

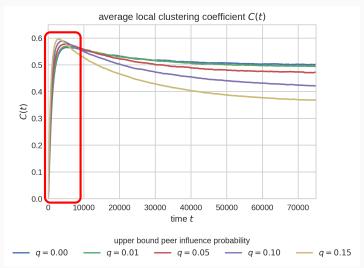


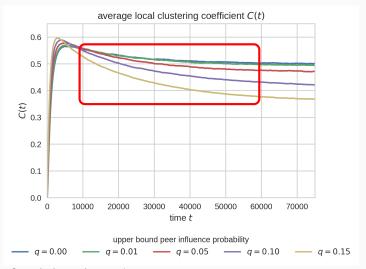
Effects on the neighbors in the next iteration

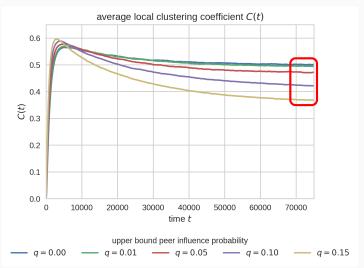


Results

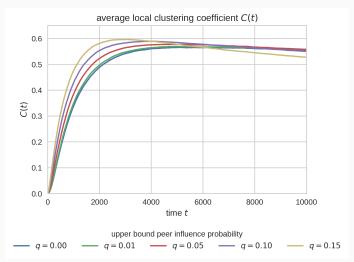








Initial phase of C(t)



Inter-Event Time Distribution

Inter-event times

- · time between two consecutive activations
- long tailed distribution

Burstiness

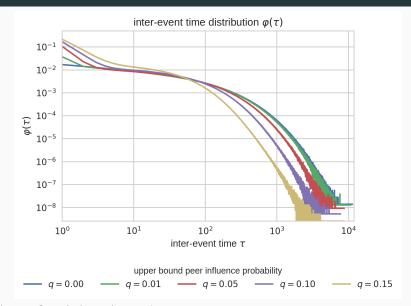
- · moments of inter-event time distribution $\varphi(\tau)$
- burstiness parameter $B \in [-1, 1]$

Burstiness

q	0.00	0.01	0.025	0.05	0.075	0.10	0.15
μ	198.7	184.6	164.3	132.8	102.4	76.3	37.2
σ	291.3	270.5	241.4	197.4	155.1	118.0	61.2
В	0.189	0.189	0.190	0.196	0.205	0.215	0.244

Table 1: Mean value μ , standard deviation σ , and the resulting burstiness parameter B of the inter-event time distribution $\varphi(\tau)$ for different upper bounds of peer influence q.

Inter-Event Time Distribution



Conclusion

Conclusion

Contributions

- · specification of a model
- · evaluation on synthetic networks

Limitations/issues

balancing the effect

Future Work

- · improve/simplify mechanism
- real-world data sets
- ..

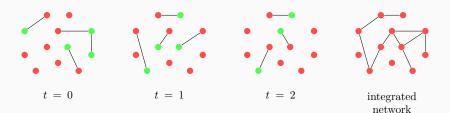
Model Details: Dynamics

For each time step t:

- 1. Create a new empty network G_t
- 2. each node v_i in G_t becomes active w. p. $f(a_i, p_i)$
- 3. active neighbors choose their communication partners and form links with them
- 4. increment time $t \rightarrow t + 1$

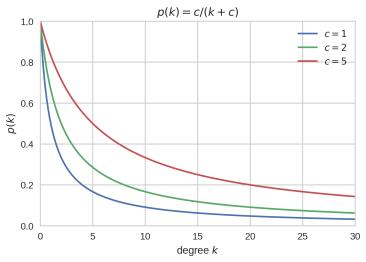
Model Details: Network Generation

time-varying network as sequence of instantaneous networks



Model Details: Reinforcement Process

Probability for the formation of a new tie p(k)



Modeling Peer Influence in Time-Varying Networks

Model Details: Cyclic Closure Mechanism

Mechanism responsible for the formation of triangles in the network structure

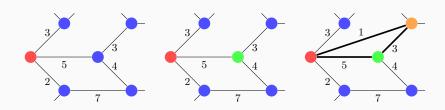
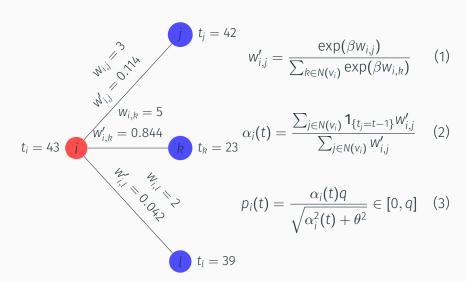


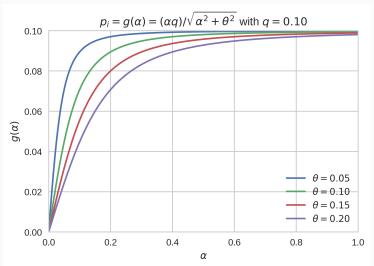
Figure 1: example for the cyclic closure mechanism

Model Details: Peer Influence Mechanism



Model Details: Sigmoid Function

Mapping from fraction of active neighbors onto probability



Model Details: All Model Parameter

Activity-driven framework: n, f(x), ε , Δt , η , m

community extension: p_{Δ} , p_d , δ , c

Peer influence extension: β , q, θ

Results: Clustering

q	0.00	0.01	0.025	0.05	0.075	0.10	0.15
t _{max}	5,140	4,919	4,839	5,192	4,173	4,044	3,038
C_{max}	0.566	0.569	0.572	0.577	0.582	0.59	0.596

Table 2: The maximum value for the local clustering coefficient $C_{\text{max}} = \max C(t)$ and the time to reach the maximum $t_{\text{max}} = \arg \max C(t)$, for different values of q.

Burstiness Measures

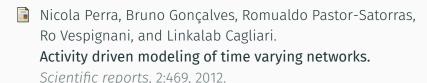
Coefficient of variation

$$c_{V} = \frac{\sigma}{\mu} \tag{4}$$

Burstiness parameter by Goh and Barabási [3]

$$B = \frac{c_V - 1}{c_V + 1} = \frac{\sigma - \mu}{\sigma + \mu} \tag{5}$$

References i



Guillaume Laurent, Jari Saramäki, and Márton Karsai. From calls to communities: a model for time-varying social networks.

The European Physical Journal B, 88(11):301, 2015.

Kwang-Il Goh and Albert-Laszlo Barabási.

Burstiness and memory in complex systems.

EPL (Europhysics Letters), 81(4):48002, 2008.