Beggars Can't Be Choosers

Augmenting Sparse Data for Embedding-Based Product Recommendations in Retail Stores

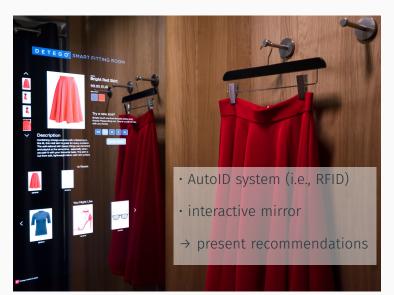
Matthias Wölbitsch^{1,2}, Simon Walk¹, Michael Goller¹, and Denis Helic² June 11, 2019

¹ Detego GmbH

² ISDS, Graz University of Technology

Motivation

Recommender systems (RS) in brick-and-mortar stores



1

Motivation

Challenges related to RS for fashion retailer

- · (often) no customer purchase histories
- feedback for recommended products
- · limited, sparse, and location-dependent data

→ Traditional RS approaches are often not applicable

Goal: tackle outlined issues related to RS for (fashion) retailer

Recommendations leveraging shopping baskets

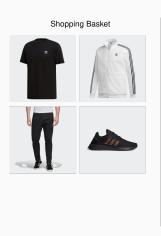
- embedding-based approach (prod2vec1)
- \cdot low-dimensional vector representation of products p_i

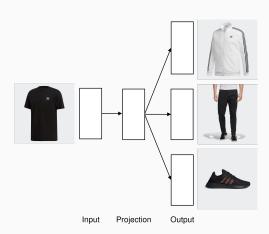
$$\mathcal{L} = \sum_{B \in \mathcal{B}} \sum_{\substack{p_i, p_j \in B \\ p_i \neq p_j}} \log \Pr(p_j \mid p_i)$$

predict remaining products in shopping basket $B \in \mathcal{B}$ (i.e., skip-gram architecture)

¹Grbovic et al., "E-commerce in Your Inbox: Product Recommendations at Scale".

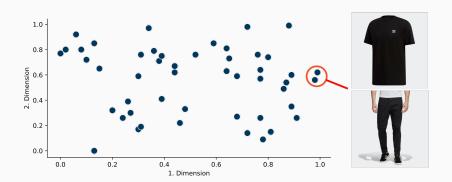
Training using the skip-gram model





Computing recommendations

- related products are close in the embedding space
- find k nearest neighbours for recommendations



Problem

- · environment and demographics affect purchase behaviour
- · product assortments often vary drastically across stores

Point-of-sale (POS) extension

- extend shopping baskets with point-of-sale information
- general model which also captures local specialties

Problem

- only very limited number of shopping baskets available
- · due to changing assortments, few sales,...

Data augmentation

- generate new training examples based on existing baskets
- · strategies: repetitions, combinations,...

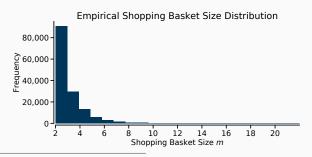
Experimental Setup

Dataset

- 20 stores across 4 cities
- 150,000 shopping baskets
- 17,000 distinct products

Evaluation

- predict remaining products in shopping basket
- metrics: Recall_k and NDCG_k



https://github.com/detegoDS/shopping_basket_dataset

Results | POS Extension

		mean <i>NDCG_{k=20}</i>	mean <i>Recall_{k=20}</i>
	individual models		
(a) (b)	co-purchase baseline prod2vec baseline	0.0637 0.1022	0.1938 0.1544
	general models		
(c) (d) (e)	co-purchase baseline prod2vec baseline prod2vec w/ POS	0.0767 0.1292 0.1323	0.2308 0.1937 0.1968

Findings:

- · general model benefits from additional POS information
- tackle location-based cold-start problem

Results | Data Augmentation

		mean $NDCG_{k=20}$	$mean\; \mathit{Recall}_{k=20}$
	baseline		
(a)	prod2vec baseline	0.1292	0.1937
	data augmentation		
(b) (c) (d)	replicated baskets prod2vec pair & triple augmented prod2vec pair augmented prod2vec	0.1279 0.1285 0.1334	0.1868 0.1866 0.1972

Findings:

- $\boldsymbol{\cdot}$ augmentation based on extracted pairs performs best
- introduction of additional & novel training contexts
- captures latent pairwise relationships of products

Results | Combined Approaches

		mean $NDCG_{k=20}$	mean $Recall_{k=20}$
	baselines		
(a) (b)	co-purchase baseline prod2vec baseline	0.0767 0.1292	0.2308 0.1937
	combined approaches		
(c) (d)	pair augmented POS prod2vec ensemble	0.1351 0.1382	0.1999 0.2152

Findings:

- · augmentation and POS extension complement each other
- ensemble using co-purchase information further improves performance

Conclusion

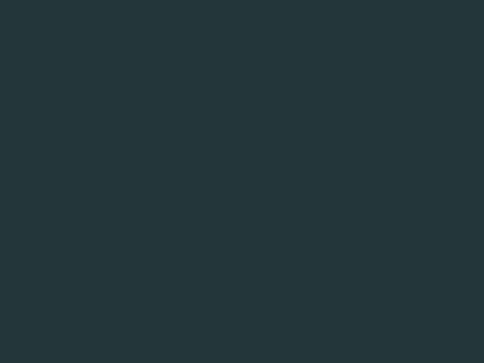
Contributions

- RS framework for brick-and-mortar (fashion) retailer
 - · point-of-sale extension & data augmentation
 - · overall 7% improvement in recommendation performance
- · real-world dataset²

Future Work

- recommendations adapted for different settings/domains
- leverage smart fitting room data

²https://github.com/detegoDS/shopping_basket_dataset



Dataset Properties

	# shopping baskets	# products	mean product overlap
City A	31,583 (21.53%)	11,819	0.47
City B	30,269 (20.63%)	9,318	0.51
City C	53,108 (36.20%)	11,313	0.54
City D	31,760 (21.65%)	9,597	0.53
Total	146,720 (100.0%)	17,392	